

ABSTRACT

Electrospray Ionization (ESI) typically induces a range of charge states for multiply charged based analytes. Charge states of 2+, 3+, 4+, 5+ and greater are commonly found depending on a species molecular size and properties. Selection of optimal MRM methods can be time-consuming as each species may have multiple precursor ions and each produces numerous fragments. The issue is further complicated in a screening context when a plate (N=96) of unique substrates needs MRM methods High-throughput assigned quickly, prior to We report on development of an bioanalysis. automated approach wherein each analyte is tuned at multiple charge states and resultant MRM sensitivity and chromatography are evaluated. The top MRM transitions are indicated in the central database and easily retrieved for high throughput bioanalysis.

Objective

Improved bioanalytical throughput of multiple charge state species by optimizing and assigning best conditions to use for high throughput analysis.

METHODS

- A Sciex 5500 triple quadrupole mass spectrometer was coupled to an LC system consisting of an Agilent UHPLC pumps and a LeadSampler (LS-I) autosampler.
- LC mobile phases consisted of water containing 0.1% formic acid and acetonitrile containing 0.1% formic acid. HALO C18 columns were used for separation.
- Data were acquired and processed with Analyst via LeadScape software.
- Several peptides were used for testing. Including LFSGDVVLTAR; MW 1177.66 and EYGGLDVLVNNAGIAFK; MW 1780.39.
- Import lists were created in Excel, containing information necessary to run and process data, including molecular formula and/or peptide sequence.

Optimization and Selection of Assigned Charge State Conditions for LC/MS/MS High Throughput Bioanalysis

Wayne Lootsma²; Mary Piotrowski¹; Julie Keefer¹; Hui Zhang¹; Joe Janiszewski²; Steve Ainley²

¹Pfizer Global Research & Development, Groton/New London Laboratories, Pfizer Inc, Groton CT 06340, ²Sound Analytics, Niantic, CT

Compound ID	MW	Formula	Peptide	Vial Position	Plate Location	Charge State
P1+1	1177.66	C53H88N14O16	LFSGDVVLTAR	1	Plate 2	1
P1+2	1177.66	C53H88N14O16	LFSGDVVLTAR	1	Plate 2	2
P1+3	1177.66	C53H88N14O16	LFSGDVVLTAR	1	Plate 2	3
P2+2	1780.39	C81H126N20O25	EYGGLDVLVNNAGIAFK	2	Plate 2	2
P2+3	1780.39	C81H126N20O25	EYGGLDVLVNNAGIAFK	2	Plate 2	3
P2+4	1780.39	C81H126N20O25	EYGGLDVLVNNAGIAFK	2	Plate 2	4

Example of used for Figure 1. Import File Optimization. Either Peptide Formula, or Monoisotopic MW field is needed to run optimization at multiple charge states.

ieneral Settings	QuickTune	FineTune	Criteria	Timing	Advanced	Autosampler	
Analyst Starter I C:\Analyst Data LS1_Optimize.d * Set the approp	Method filepath A\Projects\2019 Scre lam oriate CAD Gas valu Instrument Type	ening\Acquisition I te in the starter met 5500 Trip	Vethods\ /hod le Quad		Sampling Order	By Compound	e 16 🚔
	Autosampler	ADI	A		Mass Spectrometer		
Precursor Ion Scan Type	Q3 MS (Q3)	Production Scar	:t lon(s) Type Product lo Imber of Fragments	n (MS2) 🗸	Te Co	emperature (TEM)	450 ↓ High ∨
Spectrum Wind	ow Width +/-	0.5 🖨 Minin	num Fragment Loss Start Mass Dynamic Sta	20 🌩 amu 100 🌩 amu rt Mass 🗌	Parameter Fit (DP, C	E, etc.)	
			Parent m/z	20 🌲 amu	curvernang	Polynomiai Pit	~
LC Notes							^
							~
						OK	Cancel

Figure 2. Tuning template configured for optimal results.

Figure 3. ChromaTune Review. Charge states can be viewed and best MRM marked. For peptide P1 charge state +3 and 2nd MRM was chosen.

Figure 4. Example of Optimize screen viewing a multiple charged species. MRM marked in ChromaTune is indicated in red. If peptide sequence is included in the import file, y and b ions are displayed. For the peptide P1, the y4 ion is the most abundant. Choosing a specific y or b ion, which are more specific, can yield a better signal in matrix.

LeadScape File Edit Table	Setup Queue Review Data Help			- 🗆 ×
Setup Tuning Setup Analyze	Select Compounds Import Text File	Setup Sampling Template Test v	Specify Data Location Project 2019 Screening	Submit Batch
Queue Review MS Tune	Filters CompoundID Contains Load File	Plate Layout Override Plate A - 96 Well - 4 Columns	SubFolder Batch Name	Preview Batch
Review ChromaTune	Get Conditions	Cassetting		Start Group 0 🜩
Review Analyze Edit Databases Status	▲ Test Date/Time Multiple Conditions Group Name Compound ID 1 5/8/2019 1:13:45 PM ✓ P1+3 2 2 5/8/2019 1:21:27 PM ✓ P2+3	Con pound Lot Comment Q1 Mas s Image: Construction of the state of t	Q3 MassPolarityDP120.10Positive80136.07Positive120	CE Internal Std E

Figure 5. Marked conditions are retrieved for high throughput bioanalysis in Setup Analyze screen. Get Conditions button is pressed and the preferred conditions from the database are automatically selected based on the tune comment field. The comment field then shows that the best MRM was chosen.

RESULTS

Our group routinely uses DiscoveryQuant to optimize hundreds of new molecules weekly. The optimized MRM conditions are loaded into a central database and used to assay high throughput ADME studies. High quality conditions are needed to successfully complete the analysis of samples in a timely manner. Multiply charged species, such as peptides, often require additional consideration during the optimization process in order to be successful.

Here we report an improved workflow to optimize multiply charged species. FIA-MRM Optimization using Discovery Quant is performed at multiple charge states. This is followed by LC/MS/MS chromatography using the previously determined precursor and fragment ions in the LeadScape ChromaTune module. Multiple LC conditions can be run, a matrix sample can be included to further optimize the selection of best conditions. The LC performance and response is compared at each charge state/MRM condition and the optimal conditions are marked and uploaded to the database. The marked MRM are downloaded from DiscoveryQuant database and used for subsequent high throughput bioanalysis.

CONCLUSIONS

- An automated workflow to support LC/MS/MS high throughput bioanalysis of multiply charged analytes using Leadscape has been developed.
- MRM's for multiple charges states are generated. For peptides, y or b ions can be evaluated in the MS Tune review screen.
- Multiple LC conditions and if needed multiple extraction conditions can be evaluated using this workflow.
- Optimal conditions stored in a database, are easily retrieved by the bioanalyst running high throughput samples.

AKNOWLEDGEMENTS