

Optimizing High-Throughput LC/MS/MS "trap-and-elute" Bioanalysis in Drug Discovery

Brendon Kapinos¹, John Janiszewski¹, Mary Piotrowski¹, Hui Zhang¹, Carrie Funk¹, Wayne Lootsma², Will Schramm² ¹Pfizer Global R&D, Groton, CT, ²Sound Analytics, Niantic, CT

Introduction

Rapid, robust bioanalysis is essential in modern drug discovery. Implementation of "trapand-elute" LC enables high-throughput, high-quality analysis to drive drug discovery efforts.

The Apricot Designs Dual Arm (ADDA) autosampler was used to perform rapid "trap-andelute" bioanalysis (10 seconds per injection).

Further optimization of "trap-and-elute" parameters, including flow rate, valve timing, and columns of varying chemistries and dimensions can extend the application of this method.

Co-elution of analytes can result in ion suppression. We investigated this phenomenon using a cocktail of well-studied analytes, and pursued ways to reduce or eliminate this effect.

Materials and methods

Apricot Designs Dual-Arm autosampler (ADDA) coupled to AB SCIEX API5500 was used for sample analysis.

"trap-and-elute" bioanalysis (described at right) was used to acquire all samples.

<u>Mobile phase:</u> Aqueous: 95% 2mM ammonium formate, 5% 50/50 Methanol/Acetonitrile

Organic: 45% ACN/55% 2mM ammonium formate

1.2ml/min (standard "trap-and-elute") 1ml/min ("hybrid" trap-and-elute)

Columns:

-Optimize Technologies 1.5x5mm 13µ trap cartridge (standard "trap-and-elute") -Analytical Sales and Services Sprite Echelon 10x2.1, 20x2.1, 30x2.1mm 4µ ("Hybrid" trap-and-elute) -Advanced Materials Technology HALO 5 20x2.1mm 5µ ("Hybrid" trap-and-elute)

Above: dual-arm "trap-and-elute" plumbing • Aqueous mobile phase equilibrates one column, while organic phase elutes the other column to mass spectrometer • Coordinated valve timing maximizes throughput [10sec/injection].

Standard vs. "Hybrid" trap-and-elute

"Hybrid" trap-and-elute uses rapid trap-and-elute analysis (30sec/sample) to increase retention of analytes and provide chromatographic separation through optimization of:

- Valve timing
- LC flow rate
- Mobile phase composition
- Column type

Summary of analytical conditions

Bioanalytical mode	Cycle time (sec/sample)	Particle size	Column dimensions	
Standard trap- and-elute	10-15	13μ	1.5x5mm	Rapid "trap-and-elute" bioanalysis
"Hybrid" trap- and-elute	30	4-5μ	20-40x2.1mm	 "trap-and-elute" setup weaker eluent analytical column lower flow rate

Alleviation of ion suppression due to co-elution

 Monitored ion suppression in standard "trap-and-elute" mode using propranolol and buspirone spiked with various concentrations of verapamil (5, 10, 20µM).

• Explored ways to reduce ion suppression, including using acidic mobile phase, increasing flow rate and Ion Spray voltage.

• Applied "Hybrid" trap-and-elute LC to attenuate ion suppression.

% Decrease in MS/MS response of propranolol and buspirone spiked with varying concentrations of verapamil (standard "trap-and-elute")

	D	%Decrease in peak area compared to baseline			
	[Verapamil, µM]	0.01% FA mobile phase	1.5ml/min flow rate	Ion Spray Voltage of 5500	
	5	71.3	70.2	58.5	
Propranolol	10	79.7	77.2	67	
	20	84.8	82.4	75.3	
Buspirone	5	70.3	73.4	61.5	
	10	80.3	80.4	73.6	
	20	86.1	85.9	81.6	

% Decrease in MS/MS response of propranolol and buspirone spiked with varying concentrations of verapamil (Sprite Echelon 20x2.1 column, "Hybrid" trap-andelute LC)

	[Verapamil, µM]	% Decrease in peak area compared to baseline
Propranolol	5	0.7
	10	3.1
	20	15.0
	5	4.1
Buspirone	10	11.3
	20	25.4

Conclusions

• "Trap-and-elute" bioanalysis is a rugged, high-throughput method of sample analysis well-suited to drug discovery.

• Co-elution of high concentrations of analytes can produce ion suppression effects. Increasing Ion Spray voltage and, to a lesser extent LC flow rate, can reduce ion suppression.

 "Hybrid" trap-and-elute LC provides enhanced retention of polar molecules, separation of analytes and drastically reduced ion suppression while maintaining high throughput. Sprite Echelon and HALO 5 20x2.1 columns provided excellent retention and separation of analytes while retaining high throughput analysis.

•Further optimization of "Hybrid" trap-and-elute LC can improve retention, separation and increase sample throughput.