Sound Analytics

Chromatographic Optimization, Storage, and Re-use in a Combined High-throughput **Compound Optimization Workflow using a Dual Arm Autosampler** Wayne Lootsma¹; Nick Levitt²; Brendon Kapinos³; Veronica Zelesky³ ¹Sound Analytics, LLC, Niantic, CT; ²TwoCenter Technologies, Cambridge, MA; ³Pfizer Inc., Groton, CT

Introduction

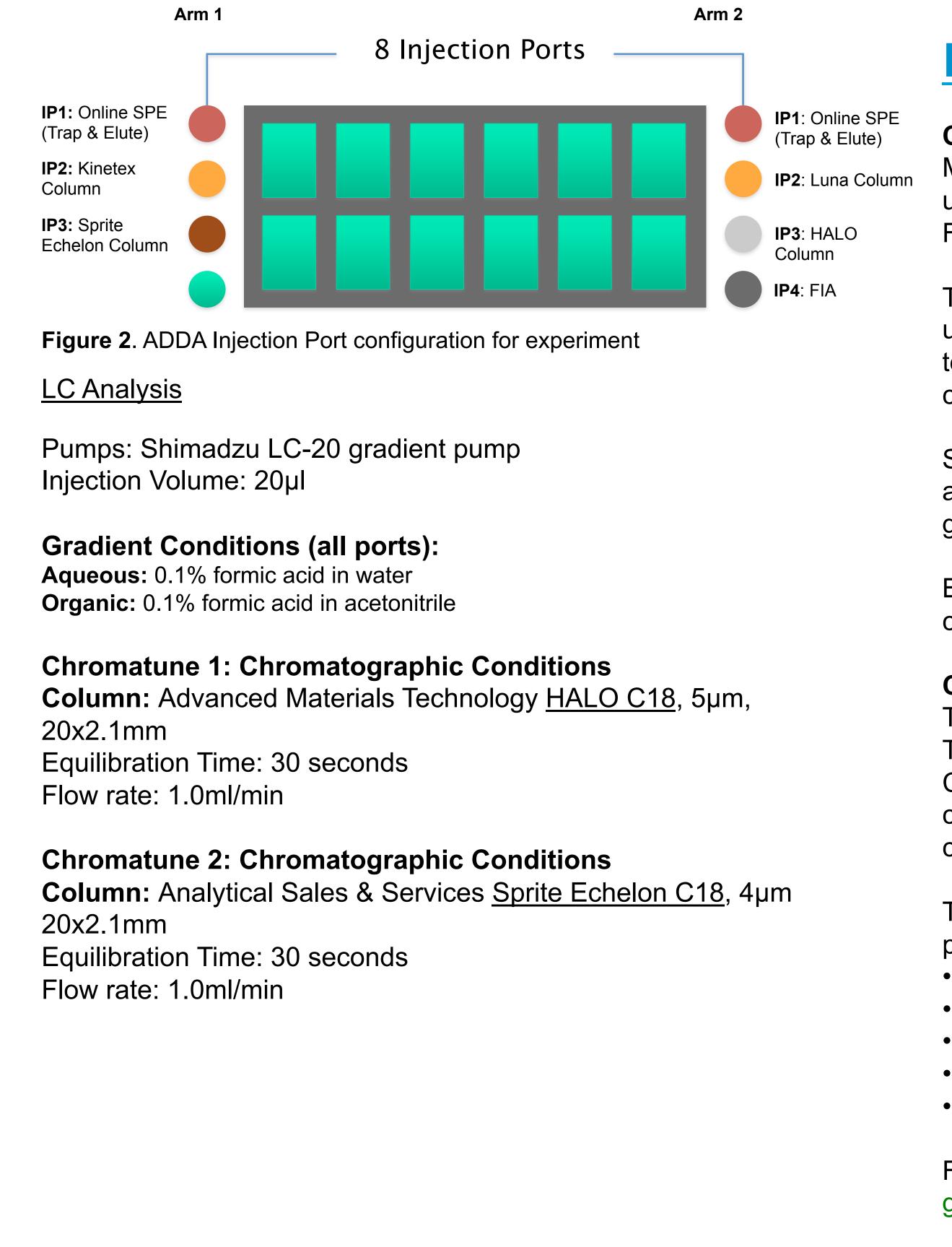
Drug discovery and lead optimization involve diverse researchers performing assays on sets of thousands of compounds on the path to development. For each compound, a method for measurement must first be developed. Automated optimization of mass spectrometry parameters can be performed in a high-throughput manner on a dual arm auto-sampler. The system described here expands this approach to automate assessment of chromatographic parameters, (retention time, peak shape and intensity are evaluated). This approach stores these LC parameters alongside tuning parameters in a central database for later use.

Methods

A 96-well plate containing a set of five distinct compounds was prepared. Full optimization of the compounds' mass spectrometry parameters was performed, after which the compounds were automatically injected into pre-defined chromatography setups. Criteria were set for peak shape, intensity, and retention time. Low concentrations of the compounds of interest were chosen to increase the likelihood of a sub-optimal chromatographic result. A side-by-side visualization of the resulting data from the multiple chromatography setups was then displayed for each compound, along with a color to mark the pass/fail criteria. The parameters for the process were automatically stored within a database for later use. An Apricot Designs Dual Arm (ADDA) Autosampler, Shimadzu LC-20 pumping system, and an ABSCIEX 4000 QTRAP were used to perform the measurement. The ADDA[™] software was used to analyze the results.

Experimental Conditions:

Sample Optimization (FIA Analysis)


Compounds in 50/50 MeOH/H₂0:

Propranolol (5µM), Quinidine (5µM), Verapamil (5µM), Gabapentin (5µM), Atenolol (5µM). Injection Volume: 50uL

				Turne	Datah	Nama	1	Cattings		Chabur	
Tune	Start Batch			Type Optimize	Batch Name Full Optimization		Settings Opt test - QT+ QT- FT			Status Submitted	_
				ChromaTune	Test on Lur		Ομ	CT Luna		Submitted	
					Test on HA			ALO 5 20x2.1- IF	0	Submitted	-
Analysis				ChromaTune						Submitted	-
·				ChromaTune	Test on Sprite E		Sprice	Echelon 4uM Arn	ni- 1P3		_
		Pause			Equilib			Submitted	_		
				Analyze	Trap_an	d_Elute	96 Wel	l - 10port Trap ar	nd Elute	Submitted	
Queue				Equilibration	Equilibrate					Submitted	
	Abort Batch			Analyze	Dual_Arm_Gradient		96 well dual gradient			Submitted	
Review Tune Pause after Batch Pause after QuickTune			upa								_
Review		iuse arter Quicki	une								1
CT											
		Status	Tes	t Date/Time	Compound ID	Plate Code	Plate Location	Vial Position	MW	Formula	
Review	1	Unsampled	5/23/2	013 2:43:13 PM	Propranolol	96 - mid	Plate A	h1	259.160		
Analysis	2	Unsampled	5/23/2	013 2:44:54 PM	Quinidine	96 - mid	Plate A	g1	324.180		
	3	Unsampled	5/23/2	013 2:46:37 PM	Atenolol	96 - mid	Plate A	f1	266.160		
	4	Unsampled	5/23/2	013 2:48:18 PM	Gabapentin	96 - mid	Plate A	e1	171.130		

Example of a batch queue for samples to be optimized and analyzed. Each test Figure 1: is performed on the full set of samples specified within the batch plate map; thus plates of samples can be optimized and have their chromatographic data captured on a high-throughput basis.

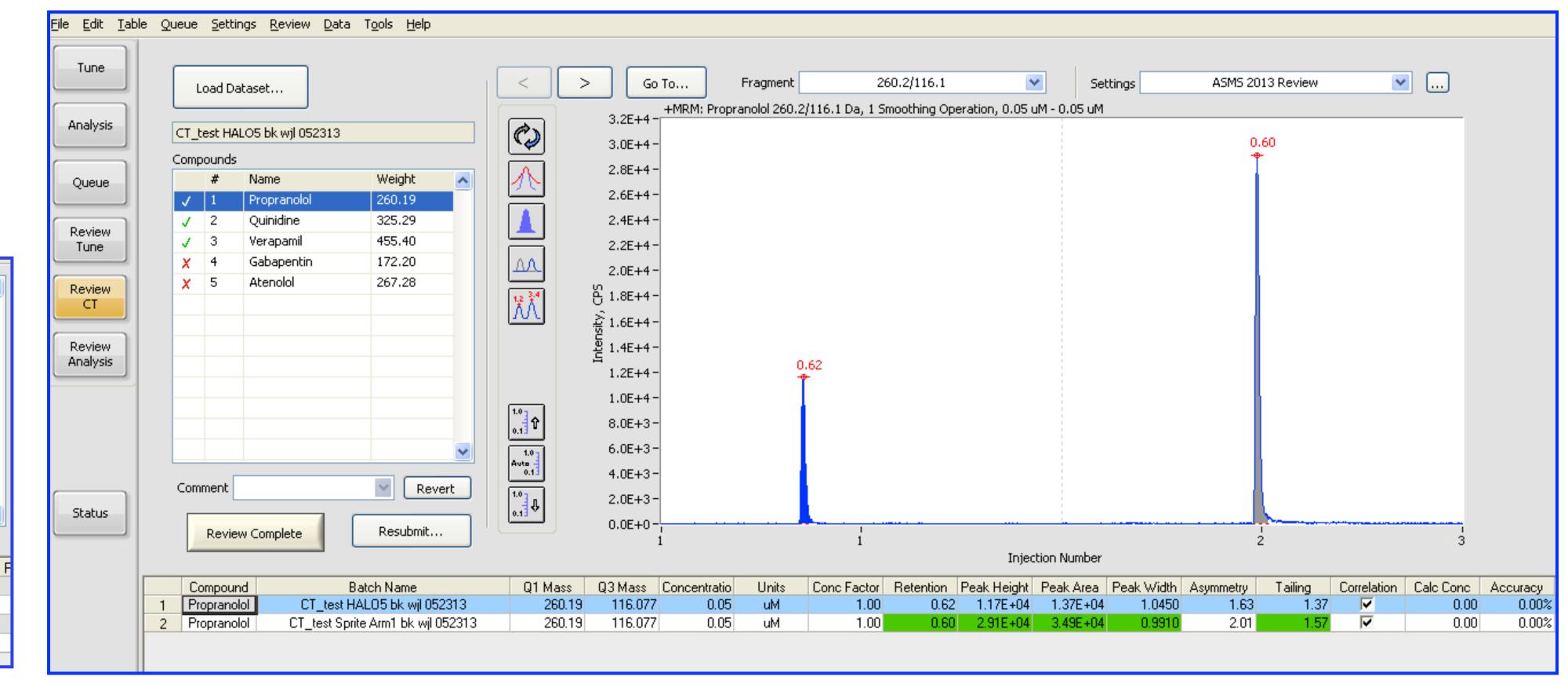


Figure 4:

ChromaTune™ quality visualization panel of each compound set (with two ChromaTune™ setups selected). The peak intensity, along with peak shape and tailing are measured against set criteria. Results are shown in the chart under the peaks. As the user scrolls down the compound list, each set of ChromaTune™ results is updated in the graph, and on the chart. In this way, results from multiple runs can be compared using the same review criteria.

Results

ChromaTune[™] Analysis

MRM conditions for all compounds were automatically determined using the ADDA software, first by a quick tune and then a fine tune FIA-based method.

The instrument then automatically switched into ChromaTuneTM mode, using a unique single-arm gradient method and a unique injection port to perform a test injection for the first column chemistry (HALO column) for all compound samples.

Subsequently, the instrument automatically performed the full gradient analysis on all compound samples for the Sprite column, giving gradient data for each compound on two separate column chemistries.

Both optimization and ChromaTune[™] testing were performed for all compounds without human intervention.

ChromaTune[™] Review panel

The samples were reviewed using the ChromaTune[™] review panel. The results for each compound could be viewed by scrolling down the Compounds chart, and looking at the updated MRM chromatogram containing the results for each column placed in side-to-side comparison.

The software performed an automated tolerance check for five quality parameters, each of which had tolerance limits set in the software:

- Peak Height Peak Area
- Peak Width at Half Height
- Tailing
- Retention Time

Failed Tests were shown in red; successful results were shown in green (see Figure 4).

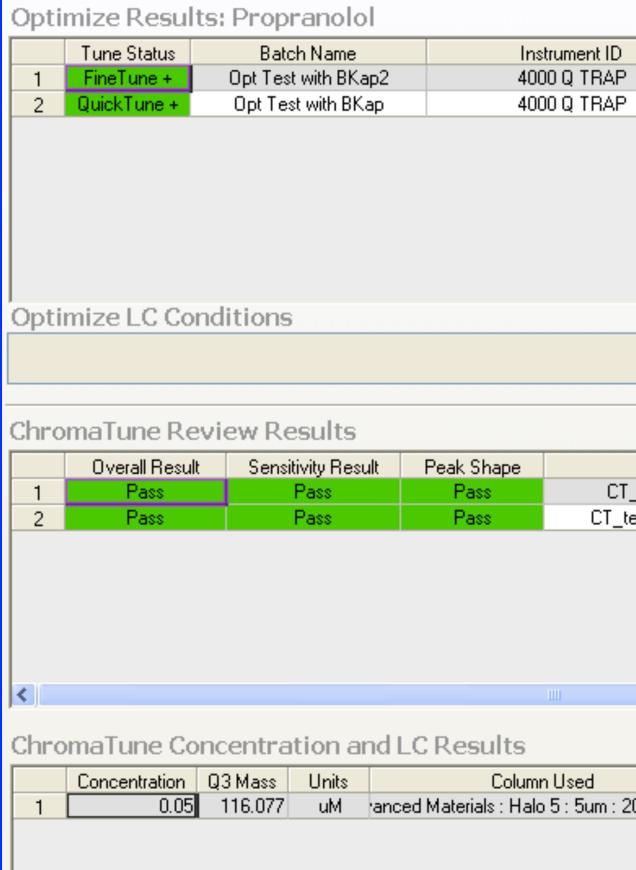


Figure 5: chart. LC conditions for each run are shown as well.

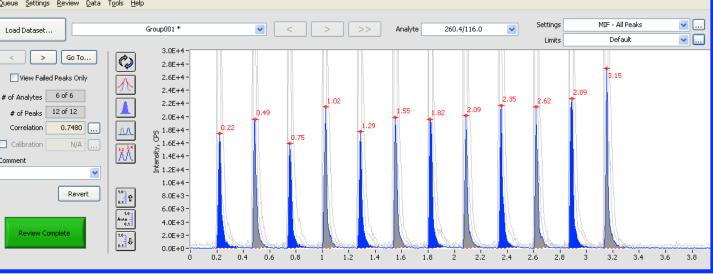
Retrieved compounds were evaluated using the Compound Optimization Panel (see Figure 5). This panel allows a user to decide on the chromatographic conditions to choose for the compound based on a set of conditions from different ChromaTune[™] runs.

A set of chromatographic optimization runs can be inserted into the optimization protocol for a set of compounds on a batch basis. These can be run automatically after the optimization of compound conditions.

The chromatographic information can be stored in a database for future review and usage by the laboratory for high-throughput analytical samples.

-	Age
	L
	# (
	Com

Figure 6: Example of analytical sample review within the ADDA Review software


Database Storage & Retrieval

After optimization, the compound and ChromaTune[™] optimization parameters were stored in the compound database for later retrieval.

The ChromaTune[™] results for all compounds were observed.

Conclusions / Summary

Graphical software displays can be constructed which quickly and efficiently display the results of the chromatographic condition runs in order to compare relative column performance, and to ensure that the compound can be run successfully under gradient conditions.

	Data		Compound ID	Proprano	lol		FineTur		*			ew Plots	
	Date 5/23/2013 3:12		Compound Nam			- r		Ion	Intensity	DP	EP	CE	CXP
	5/23/2013 2:43		Compound Lot				Q1	260.194	1.2564E+6	40	10	-	-
	0720720102.40		Molecular Weigi				Q3	116.077	9.4416E+4	40	10	25	9
			Formula				Q3	183.127	9.4380E+4	40	10	24	13
			Peptide				Q3	157.124	2.7158E+4	40	10	27	13
			Monoisotopic M	lass			Q3	-	-	-	-	-	-
			Charge State	1			Q3	-	-		-	-	-
			Polarity	Positive			Q3	-	-	-	-	-	-
			Comment				Q3	-	-	-	-	-	-
	n Name		Instrument			est			Mobile Phase A			e Phase	
est HALO)5 bk wjl 052313		4000 Q TR/	AP	6/5/201	3(Aqueo	us Wate	r : H2O 95 %		Water : H2	20 10 %	,
est HALO				AP		3(Organ	ic Wate				20 10 %	,
est HALO)5 bk wjl 052313		4000 Q TR/	AP	6/5/201	3(Organ Acid/B	ic Wate	r : H2O 95 % anol : CH3OH 5	% N	Water : H2 Methanol : -	20 10 % CH30H	, 190 %
est HALO)5 bk wjl 052313		4000 Q TR/	AP	6/5/201	3(Organ Acid/B Buffer	ic Wate	r : H2O 95 %	% N 	Water : H2 Methanol : - Ammonium	20 10 % CH30H	, 190 %
est HALO)5 bk wjl 052313		4000 Q TR/	AP	6/5/201	3(Organ Acid/B	ic Wate	r : H2O 95 % anol : CH3OH 5	% N 	Water : H2 Methanol : -	20 10 % CH30H	, 90 % e 2mM
est HALO)5 bk wjl 052313		4000 Q TR/	AP	6/5/201 6/5/201	3(Organ Acid/B Buffer	ic Wate	r : H2O 95 % anol : CH3OH 5	% N 	Water : H2 Methanol : - Ammonium	20 10 % CH30H	, 190 %
est HALO)5 bk wjl 052313		4000 Q TR/	AP	6/5/201 6/5/201	3(3(Organ Acid/B Buffer	ic Wate	r : H2O 95 % anol : CH3OH 5 onium Acetate 2	% N 	Water : H2 Methanol : - Ammonium	20 10 % CH30H	, I90 % e 2mM
est HALO)5 bk wjl 052313	Peak Height	4000 Q TR/ 4000 Q TR/	AP	6/5/201 6/5/201	3(3(Organ Acid/B Buffer pH	ius Wate ic Metha ase - Ammo -	r : H2O 95 % anol : CH3OH 5 onium Acetate 2	% N	Water : H2 Methanol : - Ammonium	20 10 % CH3OF	, 90 % e 2mM

The **Compound Optimization panel** shows a summary of the full results of the compound optimization, along with a summary of the ChromaTune™ Review results run on that compound, each with peak characteristics shown in the lowest